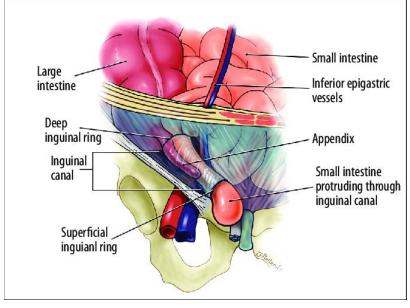


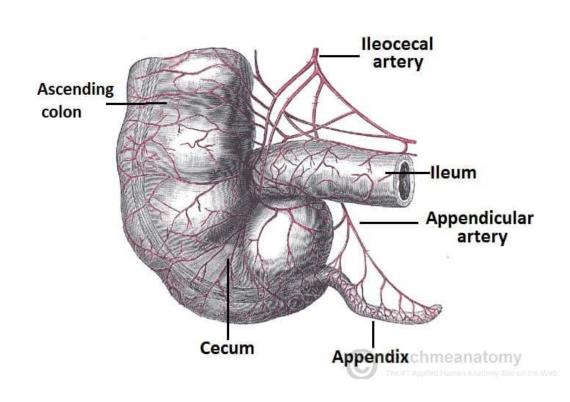
مستشفیٰ الکِندی Al-Kindi Hospital

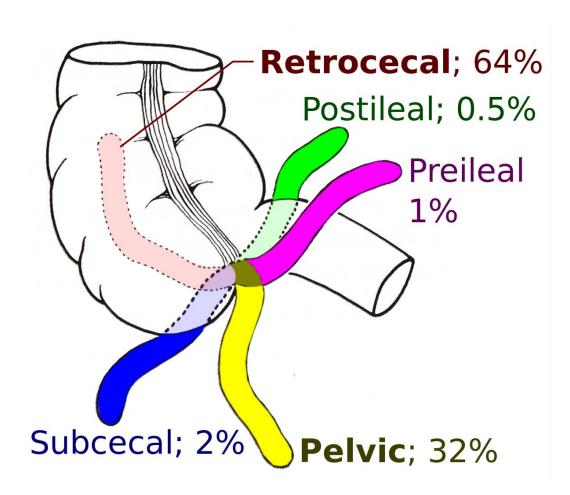

THE APPENDIX

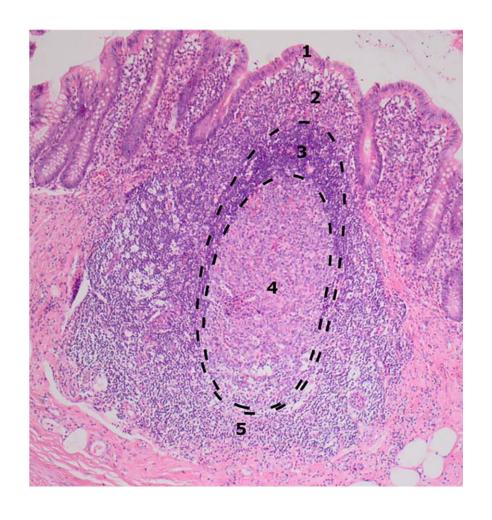
Ashraf Al-Faouri MD, MRCS, FACS
Consultant HBPS & Liver Transplantation

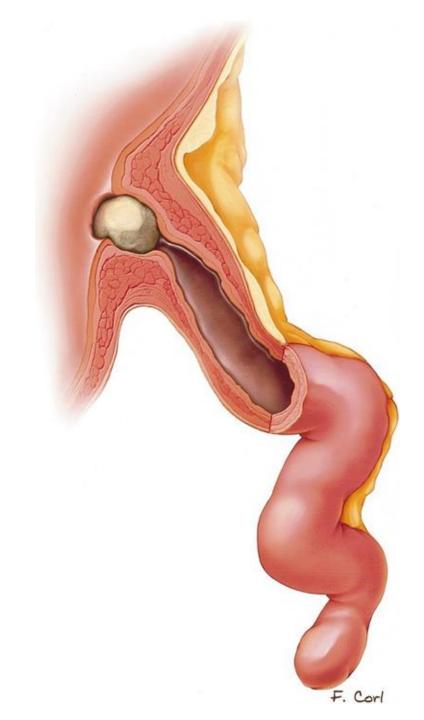
HISTORY

- Claudius Amyand in the early 18th century was the first surgeon to describe a successful appendectomy.
- Chester McBurney advocated for early appendectomy in his 1889 publication.
- In 1982, Kurt Semm, a gynecologist, reported on the first laparoscopic appendectomy, which is now the most widely adopted technique.


SOURCE CONTROL

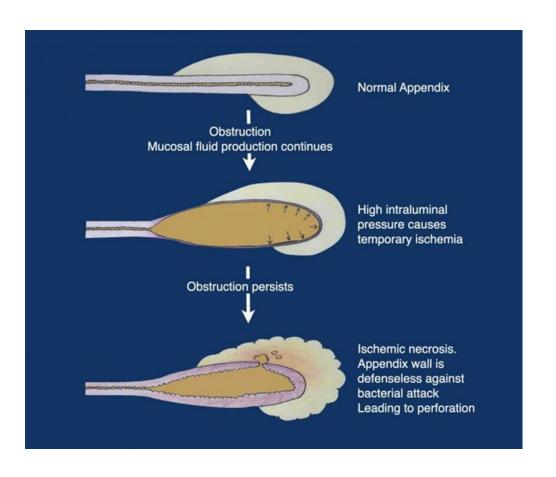

- The first intra-abdominal operation to treat infection via "source control" was appendectomy. This operation was pioneered by Charles McBurney at the New York College of Physicians and Surgeons, among others.
- McBurney's classic report on early operative intervention for appendicitis was presented before the New York Surgical Society in 1889.
- Appendectomy for the treatment of appendicitis, previously an often fatal disease, was popularized after the 1902 coronation of King Edward VII of England was delayed due to his falling ill with appendicitis.
- Edward insisted on carrying out his schedule, despite
 worsening abdominal pain. Sir Frederick Treves, a
 prominent London surgeon, was among the consultants
 in attendance upon Edward. As the prince's condition
 deteriorated, and as he continued to insist that he would
 go to Westminster Abbey to be crowned, Treves told him,
 "Then Sire, you will go as a corpse." Edward relented,
 Treves drained a large periappendiceal abscess, and the
 king lived.


ANATOMY

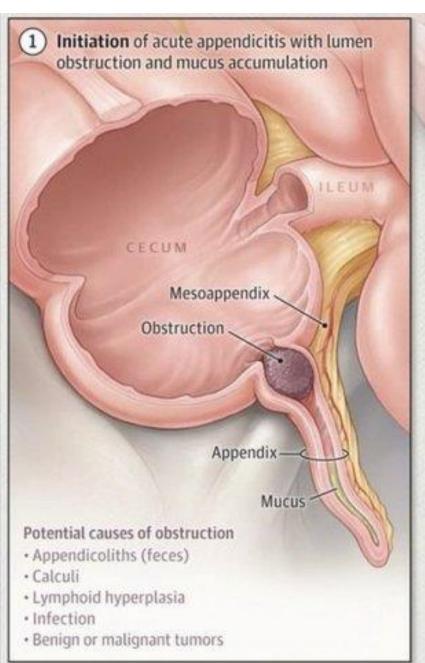

HISTOLOGY

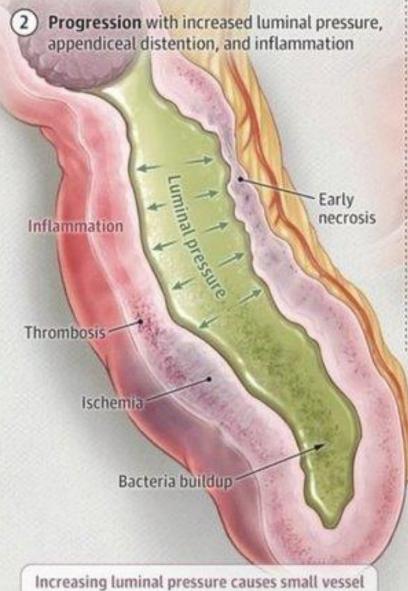
ACUTE APPENDICITIS

- The lifetime incidence: 8.6% in men and 6.7% in women, with the highest incidence occurring in the second and third decade of life.
- The most frequent emergent abdominal operations.
- The etiology of appendicitis is perhaps due to luminal obstruction that occurs as a result of lymphoid hyperplasia in pediatric populations; in adults, it may be due to fecaliths, fibrosis, foreign bodies (food, parasites, calculi), or neoplasia.

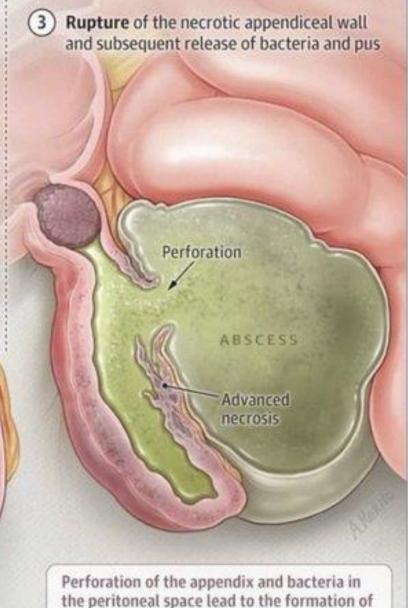


OBSTRUCTION


- Lymphoid hyperplasia, predominantly in young patients (60%)
- Appendicolith/ Fecolith (33%)
- Foreign bodies (4%)
- Crohn disease or other rare causes, e.g. stricture, tumor, parasite
- Appendiceal tumor (usually in patients over 50 years old)

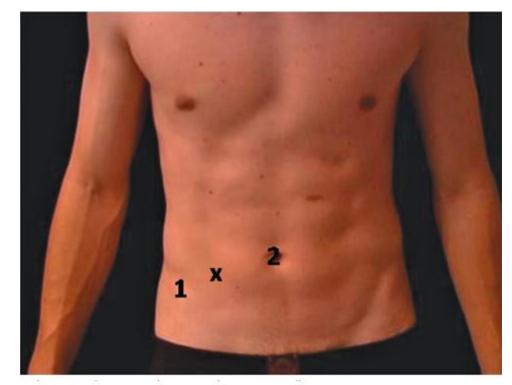


PATHOPHYSIOLOGY


PATHOPHYSIOLOGY Obstruction of the Ulceration (lesion) Promotes microbe appendiceal lumen of the appendix invasion (ex. (inside the mucosal lining bacterial) appendix) Build up of mucous Inflammation and ↓ oxygen delivery in the appendix swelling of the (hypoxia) *Appendix constantly appendix secreting mucous ↑ appendiceal ↓ blood flow to **APPENDICITIS** lumen pressure the appendix

thrombosis and lymphatic flow stasis, resulting

in tissue ischemia and bacteria buildup.



abscess, phlegmon, or generalized peritonitis.

	TRUE POSITIVE LIKELIHOOD RATIO	95% CONFIDENCE INTERVAL	TRUE NEGATIVE LIKELIHOOD RATIO	95% CONFIDENCE INTERVAL
Duration of symptoms (hours)				
>9	1.01	0.97-1.05	0.94	0.62-1.42
>12	0.96	0.90-1.04	1.19	0.87-1.63
>24	0.65	0.47-0.90	1.47	1.14-1.90
>48	0.49	0.36-0.67	1.20	1.08-1.34
Fever	1.64	0.89-3.01	0.61	0.49-0.77
Gastrointestinal dysfunction				
Anorexia	1.27	1.14-1.41	0.59	0.45-0.77
Nausea	1.15	1.04-1.36	0.72	0.57-0.91
Vomiting	1.63	1.45-1.84	0.75	0.69-0.80
Pain				
Pain migration	2.06	1.63-2.60	0.52	0.40-0.69
Pain progression	1.39	1.29-1.50	0.46	0.27-0.77
Direct tenderness	1.29	1.06-1.57	0.25	0.12-0.53
Indirect tenderness	2.47	1.38-4.43	0.71	0.65-0.77
Psoas sign	2.31	1.36-3.91	0.85	0.76-0.95
Rebound	1.99	1.61-2.45	0.39	0.32-0.48
Percussion tenderness	2.86	1.95-4.21	0.49	0.37-0.63
Guarding	2.48	1.60-3.84	0.57	0.48-0.68
Rigidity	2.96	2.43-3.59	0.86	0.72-1.02

	TRUE POSITIVE LIKELIHOOD RATIO	95% CONFIDENCE INTERVAL	TRUE NEGATIVE LIKELIHOOD RATIO	95% CONFIDENCE INTERVAL
Temperature (degrees centigrade)				'
>37.7	1.57	0.90-2.76	0.65	0.31-1.36
>38.5	1.87	0.66-5.32	0.89	0.71-1.12
White blood cells (10 /L)				
≥10	4.20	2.11-8.35	0.20	0.10-0.41
≥15	7.20	4.31-12.00	0.66	0.56-0.78
C-reactive protein (mg/L)				
>10	1.97	1.58-2.45	0.32	0.20-0.51
>20	2.39	1.67-3.41	0.47	0.28-0.81

Source: F.C. Brunicardi, D.K. Andersen, T.R. Billiar, D.L. Dunn, L.S. Kao, J.G. Hunter, J.B. Matthews, R.E. Pollock: Schwartz's Principles of Surgery, 11e Copyright © McGraw-Hill Education. All rights reserved.

DDX

TABLE 76.1 Differential diagnosis of acute appendicitis.

Children	Adult	Adult female	Elderly
Gastroenteritis	Regional enteritis	Mittelschmerz	Diverticulitis
Mesenteric adenitis	Ureteric colic	Pelvic inflammatory disease	Intestinal obstruction
Meckel's diverticulitis	Perforated peptic ulcer	Pyelonephritis	Colonic carcinoma
Intussusception	Torsion of testis	Ectopic pregnancy	Torsion appendix epiploicae
Henoch-Schönlein purpura	Pancreatitis	Torsion/rupture of ovarian cyst	Mesenteric infarction
Lobar pneumonia	Rectus sheath haematoma	Endometriosis	Leaking aortic aneurysm

Λ.	٠,	-		_

Save

Email

> Med J Armed Forces India. 2016 Oct;72(4):332-337. doi: 10.1016/j.mjafi.2016.06.007. Epub 2016 Aug 11.

The Alvarado score versus computed tomography in the diagnosis of acute appendicitis: A prospective study

Ashraf F Al-Faouri ¹, Khaled Y Ajarma ², Abdulhamid M Al-Abbadi ³, Abdullah H Al-Omari ⁴, Tariq S Almunaizel ³, Alaa A Alzu'bi ³, Ra'ed Y Al-Jarrah ³, Omar Y Abo-Zaiton ³

The Alvarado score for evaluation of suspected acute appendicitis.

Variable	Score
Symptoms	
Migratory right iliac fossa pain	1
Anorexia	1
Nausea/vomiting	1
Signs	
Right iliac fossa tenderness	2
Rebound tenderness	1
Elevated temperature > 37.3 °C	1
Laboratory tests	
$Leukocytosis > 10.0 \times 10^9/L$	2
Neutrophils > 75% or left shift	1

Alvarado score diagnostic performance in both genders.

Criterion	Overall	Male	Female
Sensitivity (%)	84.96 (79.62-89.35)	87.5	79.7
Specificity (%)	59.57 (48.95-69.58)	84.1	38
Positive predictive value (%)	83.48 (78.04-88.04)	95	65.5
Negative predictive value (%)	62.22 (51.38-72.23)	66.1	55.9
Positive likelihood ratio	2.1 (1.63-2.70)	5.5	1.29
Negative likelihood ratio	0.25 (0.18-0.36)	0.15	0.53
Accuracy (%)	77.5	86.74	62.9

CTS diagnostic performance in both genders.

Criterion	Overall	Male	Female	
Sensitivity (%)	94.2 (87.75-97.83)	93.7	94.9	
Specificity (%)	90.0(79.49-96.24)	90.0	89.5	
Positive predictive value (%)	94.2 (87.75-97.83)	96.7	90.2	
Negative predictive value (%)	90.0 (79.49-96.24)	94.4	81.8	
Positive likelihood ratio	9.42 (4.40-20.15)	9.01	9.37	
Negative likelihood ratio	0.06 (0.03-0.14)	0.07	0.57	
Accuracy (%)	92.6	92.8	92.2	

Comparison of the diagnostic performance of AS against CTS in 112 patients.

Criteria	AS	CTS	p-Value
Sensitivity %	85.4	94.2	0.0382
Specificity%	65.0	90.0	0.0010
Positive likelihood ratio	2.4411	9.4175	0.0003
Negative likelihood ratio	0.2240	0.0647	0.0101

 $p ext{-Value} < 0.05$ is statistically significant.

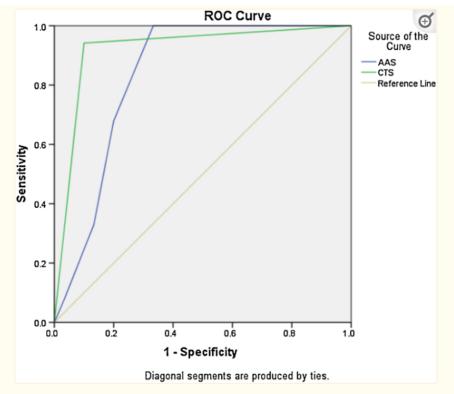


Fig. 2

Area under the ROC (receiver operating characteristic) curve for CTS is significantly higher than that of AS (0.921 versus 0.752, p-value 0.05).

Meta-analyses comparing CT scan and US outcomes

		AUTHOR					CUMMARY
		TERASAWA	WESTON	DORIA	AL-KHAYAL	VAN RANDEN	SUMMARY
Year		2004	2005	2006	2007	2008	
No. of studies		22	21	57	25	6	
No. of patients	CT US Total	1172 1516 2688	NR NR 5039	NR NR 13697	NR NR 13046	NR NR 671	
Sensitivity	CT US				93% (CI: 92%-95%) 84% (CI: 82%-85%)	91% (CI: 84%-95%) 78% (CI: 67%-86%)	CT more sensitive than US in five of five meta-analyses
Specificity	CT US		95% (CI: 93%-96%) 93% (CI: 92%-94%)			90% (CI: 85%-94%) 83% (CI: 76%-88%)	CT more specific than US in four of five meta-analyses
Positive predictive value	CT US	NR NR	94% (CI: 92%-95%) 89% (CI: 87%-90%)		90% (CI: 89%-92%) 90% (CI: 89%-91%)		CT has superior positive predictive value in one of two meta-analyses
Negative predictive value	CT US	NR NR	97% (CI: 96%-98%) 92% (CI:91%-93%)		96% (CI: 95%-97%) 93% (CI: 92%-94%)		CT has superior negative predictive value in both meta-analyses
Accuracy	CT US	NR NR	NR NR	NR NR	94% (CI: 93%-94%) 92% (CI: 92%-96%)		CT is more accurate in the one study reporting results

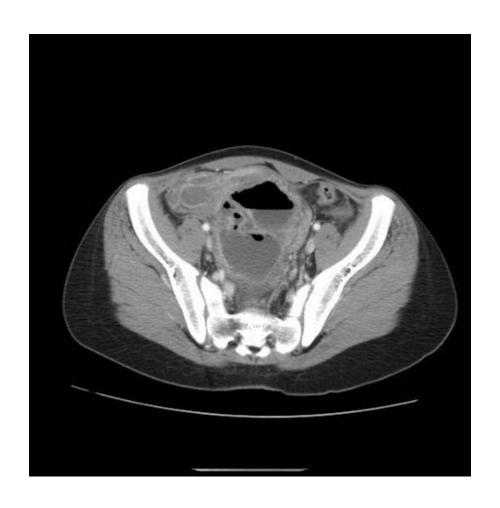



Figure 1. Computed tomography image showing appendiceal mass

